Regeneron Genetics Center


One million exomes sequences video
One million exomes sequenced

Sequencing one million exomes and beyond to impact human health and novel drug discovery. This is just the beginning.

At Regeneron, we are committed to the motto of doing well by doing good
Doing well by doing good

At Regeneron, we are committed to the motto of “doing well by doing good.” This is reflected across our business, including in our RGC work as we seek to learn more about human genetics and share our knowledge in order to have a positive impact on human health.

UK Biobank Life Sciences Consortium

Regeneron and its life science company consortium members are serving as a model for ethical ‘pre-competitive’ collaboration that can accelerate medical discoveries and potentially improve patient care. In 2018, we welcomed collaborators AbbVie, Alnylam, AstraZeneca, Biogen, Bristol-Myers Squibb, Pfizer Inc. and Takeda into a major research consortium to fund the generation of genetic exome sequence data from the 500,000 volunteer participants who make up the UK Biobank health resource. Each collaborator is committing $10 million to enable a dramatic acceleration of sequencing timelines, with Regeneron covering the balance and conducting the sequencing effort. The sequencing data will be paired with detailed, de-identified medical and health records from the UK Biobank resource, including enhanced measures such as brain, heart and body imaging, to create an unparalleled resource for linking human genetic variations to human biology and disease. This invaluable scientific resource is being made available to the global research community through the UK Biobank’s access process.

Our unique approach and collaboration amongst industry has the potential to dramatically speed up the drug development process. Recent advances in sequencing technology and integration of rich data resources mean there are infinite discoveries to be made that could potentially impact human health. In order to fully tap this new resource, we believe cooperation, transparency and open access will be absolutely necessary, and more importantly, is the right thing to do.

RGC Scientific Advisory Board

We are honored to have important leaders in the genetics community as members of our Scientific Advisory Board:

Richard Lifton, MD, PhD

President of the Rockefeller University

Peter Donnelly, PhD

Professor of Statistical Science and Director of the

Wellcome Trust Centre for Human Genetics

Elaine R. Mardis, PhD

Robert E. and Louise F. Dunn Distinguished Professor of Medicine and Co-Director at the McDonnell Genome Institute at the Washington University School of Medicine

Wendy K. Chung, MD, PhD

Herbert Irving Associate Professor of Pediatrics at the Columbia University Medical Center

Tim Hunkapiller, PhD

President of Discovery Biosciences Corporation

James R. Lupski, MD, PhD, DSc (hon)

Cullen Professor Molecular and Human Genetics at the Baylor College of Medicine

Sekar Kathiresan, MD

Director of Preventive Cardiology at Massachusetts General Hospital, Associate Member in the Broad Institute's Program in Medical and Population Genetics and Associate Professor of Medicine at Harvard Medical School

Additional resources

RGC Factsheet

See how the RGC is improving patient care by using genomic approaches to speed drug discovery.

DRIFT Consortium Factsheet

Learn more about the RGC-founded DRIFT Consortium and see how we’re assisting the research community.

General population collaborations:
Geisinger logo

Geisinger Health System

The Geisinger Health System is one of the pre-eminent integrated health systems in the country serving nearly 3 million people in central Pennsylvania. Geisinger has long been a leader in EMR based analytics and research, being one of the first health systems to adopt electronic medical records (EMRs) in the country and a leader in clinical, genomic and epidemiological research.

In 2014, we launched a foundational initiative with Geisinger to sequence 100,000 consented participants, linking genomic data to de-identified EMR data to enable large-scale genetic discovery at an unprecedented scale. Having sequenced nearly 100,000 participants by June of 2018, the collaboration has increased its long-term goal to sequencing 250,000 participants in Geisinger’s MyCode project. In addition, we are able to return results to Geisinger, where they validate the results and share them with patients in order to inform their care.

UK Biobank logo

UK Biobank

Funded by the Wellcome Trust in partnership with the Medical Research Council (MRC), the UK Biobank is one of the world’s largest genetic resources amassing DNA samples and de-identified electronic health records for 500,000 volunteer participants. Exquisite phenotype data collected on each participant includes enhanced measures such as brain, heart and body imaging, which has created an unparalleled resource for linking human genetic variations to human biology and disease. We have partnered with the UK Biobank to whole exome sequence all 500,000 volunteers and pair that data with detailed, de-identified medical and health records. After a brief exclusivity period, this invaluable scientific resource is made publicly available to the global research community.

In early 2018, we welcomed GlaxoSmithKline, AbbVie, Alnylam, AstraZeneca, Biogen, Bristol-Myers Squibb, Pfizer Inc. and Takeda to a major pre-competitive research consortium to fund the generation of exome sequence data for all 500,000 volunteer participants who make up the UK Biobank health resource. This consortium enables a dramatic acceleration of our sequencing efforts, with the goal of enabling faster genetic discovery, target identification and validation for all.

Phenotype collaborations:

We have various collaborations focused on deepening our understanding of specific disease phenotypes – for instance, multiple sclerosis (MS) research with the ultimate goal of enhancing patient care. Some of these MS-related programs include:

The Accelerated Cures Project logo

Accelerated Cures Project

The Accelerated Cures Project (ACP) is a non-profit organization dedicated to accelerating research efforts to improve diagnosis, to optimize treatment and to cure multiple sclerosis. The RGC has partnered with ACP to conduct whole exome sequencing for the ACP Repository, which consists of a collection of highly-characterized biosamples and data from over 3,000 subjects, with subsequent research.

The Florey Institute of Neuroscience and Mental Health logo

The Florey Institute of Neuroscience and Mental Health on behalf of the Australia and New Zealand Multiple Sclerosis Genetics Consortium.

The RGC and The Florey Institute of Neuroscience and Mental Health are collaborating to whole exome sequence and study the genetic basis of more than 3,000 onset cases of MS patients and controls to identify genes that are associated with disease susceptibility and/or sub-phenotypes.

Family-based collaboration: Columbia University

The RGC and Columbia University Medical Center are studying the genetic basis of familial forms of various diseases, including inherited cardiometabolic diseases, cancer predisposition and rare diseases. Our collaboration spans exome sequencing and Mendelian disease gene discovery through functional genomics leveraging induced pluripotent stem cell technology and genetically humanized models of disease. Columbia’s principal investigators, Wendy Chung, MD, PhD, and Rudy Leibel, MD, have made seminal contributions to understanding the genetic and mechanistic basis of several inherited forms of diseases and have developed extensive resources for family-based genetics studies. So far, our collaboration has completed exome sequencing and genetic analysis of hundreds of families who have consented and enrolled in studies at Columbia University Medical Center.

Columbia University Medical Center logo
Family-based collaboration: Columbia University
Regeneron is collaborating with colleagues at the University of Maryland to study founder populations.
Founder populations:
University of Maryland and Amish Research Clinic

The Lancaster Old Order Amish are a founder population in whom the present-day population descended from approximately 300-400 individuals. This unique ancestral history has led to a distinct genetic architecture in which some rare disease-related genetic variants have become enriched in the present-day population through genetic drift. Thus, scientists can identify genetic variants within the Amish population using a smaller sample size than would be needed with the general population.

We are collaborating with colleagues at the University of Maryland to study a variety of complex diseases and traits including cardiovascular disease, hyperlipidemia, diabetes, osteoporosis and bone health, pulmonary function, longevity and general wellness. We are exome sequencing DNA samples from as many as 8,000 Old Order Amish research participants to discover novel genotype-phenotype associations and pharmacogenetic information. For instance, we are seeking modifier genes for cholesterol levels in subjects with Familial Defective Apolipoprotein B (R3500Q), which is more common among the Amish than in the general population. Future studies will focus on genotype-targeted recruitment and deep phenotyping to unveil mechanisms underlying disease and related traits.

Data technology

When it comes to our data technology, our goal is to minimize friction between the data and the insights we’re trying to glean.

Automation doesn’t scale itself – that’s what we do. I help write processes that allow the robot to do what it does at a faster speed.

Erin Brian

Research Associate III

Our approach to genetic sequencing

Our sequencing efforts are growing at a rapid pace, thanks to collaboration amongst teams to streamline the sample preparation and sequencing process.

Genetic sequencing video

Data analytics is an exciting area right now because there’s a big move towards ‘big data’ and ‘machine learning.’ It’s super exciting to apply these approaches to human genetics and hopefully we can make a difference for many patients.

Lukas Habegger, PhD

Associate Director, Bioinformatics

The impact of our discoveries

At the end of the day, we’re all here to make an impact – something that can start with discoveries made at the RGC.

The impact of our discoveries video
GPR75: genetics and obesity

Worldwide, at least 650 million people are classified as obese and have a body mass index (BMI) of 30% or higher. Our scientists have discovered that a rare genetic mutation (impacting ~1 in 3,000 people) in the GPR75 gene is associated with reduced risk for obesity. By analyzing the genetic sequences of nearly 650,000 people, we’ve gleaned fresh insight into the genetic roots of obesity. This discovery opens the door for potential new therapeutic targets that could help treat or prevent obesity through antibodies, small molecule inhibitors, and RNAi. Read the full announcement.

Genetic and Obesity
GPR75 & Obesity: Behind the Science

Meet the Regeneron scientists behind the GPR75 discovery and hear how this research came to life.

Nonalcoholic Steatohepatitis (NASH)

NS Abul-Husn. A Protein-Truncating HSD17B13 Variant and Protection from Chronic Liver Disease. N Engl J Med 2018; 378:1096-1106.

Nonalcoholic Steatohepatitis (NASH)

Our RGC scientists identified for the first time a variant in the HSD17B13 gene that is associated with reduced risk of, or protection from, various chronic liver diseases for which there are currently no approved therapeutics. By analyzing extensive genetic sequencing data linked with electronic health records, we discovered a potential new therapeutic target to reduce the risk of chronic liver disease and progression to more advanced stages of disease, such as NASH. Based on these findings, we are collaborating with Alnylam to discover potential RNA interference (RNAi) therapies for this target. More about this 2018 discovery.


We found that genetic and therapeutic inhibition of ANGPTL3 in humans and in mice was associated with decreased levels of all three major lipid fractions and decreased odds of atherosclerotic cardiovascular disease. While the ANGPTL3 research program at Regeneron dates back to the 1990’s, this recent genetic validation from our RGC team has helped further our research efforts, which now includes Phase 3 clinical trials of an investigational medicine. Read the original announcement.


FE Dewey. Genetic and Pharmacologic Inactivation of ANGPTL3 and Cardiovascular Disease. N Engl J Med 2017; 377:211-221.

Moving in the right direction

Each and every day, our Regeneron team is working to revolutionize drug discovery and development.

Alternate Text

It makes me feel excited and proud to know that if I spend a long time trying to figure out something, it could help someone who right now doesn’t have any hope.

Julie Horowitz

Associate Manager, Immune Diseases

MyCode saved my life icon
MyCode saved my life

Barbara Barnes is alive today because she contributed her genetic information to a research project. On her doctor's recommendation, the 58-year-old Hazleton, PA, homemaker gave a blood sample in April 2016 to a growing biobank called the MyCode Community Health Initiative. Based at Geisinger Health System in Danville, PA, its goal is to help healthcare professionals develop more targeted, effective treatments for patients. Barnes' DNA joined that of over 150,000 volunteers who are notified if genetic changes are found in their information associated with conditions that can then be treated.

The Hospital for Sick Children

Dr. Aleixo Muise and the Hospital for Sick Children (SickKids) have established one of the leading inflammatory bowel disease (IBD) clinical and research centers in the world and have led the interNational Early Onset Paediatric IBD Cohort Study (NEOPICS), a SickKids' based initiative that brings together international pediatric gastroenterologists and scientists from around the world. We are collaborating with SickKids to study the genetic determinants of infantile and pediatric onset cases of IBD through exome sequencing and analysis of thousands of families seen at SickKids and other institutions.

SickKids: The Hospital for Sick Children

For Aleixo Muise, MD, PhD, Co-Director of the Inflammatory Bowel Disease Centre at Toronto SickKids, genetic research is personal. His team has collaborated with us since 2014 and in that time we have sequenced more than 1,500 young patients. Early research into this young patient population points to a small percentage having a single gene mutation that causes the disease. When the child has this mutation, they are generally cured of IBD through a bone marrow transplant, thus making genetic sequencing incredibly valuable to these young patients. We are proud to be able to help inform patient care through our genetic sequencing efforts.

SickKids logo
SickKids: The Hospital for Sick Children
Alternate Text

Through this partnership we have been able to diagnose multiple patients with either novel mutations in known disease-causing genes, or with mutations in genes not previously associated with human disease. Ultimately, this serves our patients by providing a diagnosis, directing care and offering prenatal diagnosis for families under our care.

Hagit Baris Feldman, MD

Genetics Institute, Rambam Health Care Campus, Israel

Back to top